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Abstract-Based on Tresca's yield condition and the associated flow rule. the distribution of stress.
strain and displacement in a rotating hollow cylinder of elastic-plastic material under generalized
plane strain is discussed.

I. INTRODUCTION

Rotating tubes are found frequently in mechanical engineering. To better utilize the
material, plastic deformation is admitted in many cases. However, most of the authors
concerned with this topic [e.g. Davis and Connelly (1959). Rimrott (1960). Lenard and
Haddow (1972). Lo and Abeyaratne (1981). Durban and Kubi (1990)] did not study partial
yielding. The first analysis of a partially plastic. elastically compressible rotating tube is
due to Gamer and Lance (1983), who assumed fixed ends.

The subject of this paper is the more intricate problem of a rotating elastic-perfectly
plastic tube with free ends. The basis of this investigation is Tresca's yield condition and
its associated now rule. It is assumed that the tube retains its circular symmetry throughout
the loading process and is sulliciently long for the stress and strain not to vary along the
tube. Then, the principal directions of stress and strain are the radial, circumferential and
axial directions.

In Fig. t. Tresca's yield condition is represented in the usual way as a regular hexagon
in the deviatoric plane of the three-dimensional principal stress space. This figure shows six
phases of the development of plastic flow occurring in a rotating tube with inner boundary
at r = a and outer boundary at r = h. The denomination of the different elastic and plastic
regions and the border radii separating them can be found in Fig. 2. At an angular speed
(t) = WI. plastic flow starts at the inner edge and spreads with increasing values of w (Figs
Ia and Ib). Next, for not too thin-walled tubes (see Section 3.3), the stresS image point of
the elastic-plastic border rl reaches at w = Wz a corner of Tresca's hexagon and two
additional plastic regions with different forms of the yield condition emerge (Figs Ic and
Id). Further increase in angular speed causes the stress image points of plastic region I to
migrate into the corner and for w ~ WJ two dilTerent plastic regions only remain inside the
clastic outer shell (Fig. Ie). Finally. for W = W4. the elastic region disappears and the tube
attains a fully plastic state (Fig. If), which however is not its collapse state (see Section 4).

In Section 2. the basic equations of stresses and displacements in the elastic region and
in the three dilTerent plastic regions will be determined by integration. In Section 3. the
stress distributions in the tube are derived for dilTerent ranges of the load parameter. Finally.
in Section 4, numerical results are presented and discussed.

2. BASIC EQUATIONS

2.1. Elastic region
The equation of equilibrium

and the geometric relations

dO', 0', - 0'0 ,-- +-- = -pw'r
dr r '
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Fig. I. Stress field in the rotating tuhc mapped onto the deviatorie plane of the principal stress sp,ll:e
(sketch). (a) w = OJ,. yielding starts at the inner boundary' = a; (b) OJ, < OJ < 01,. a plastic region
spreads; (e) 0> = OJ,. the axial stress equals the radial stress at the clastic plastic border ',; (1I)
(I): < 0) < 0>" two additional plastic regions spread; (e) w, ,;:; 0) < 01 •• the first plastic region has

disappeared; (f) 01 = 01 •• the entire tuhc behaves plastically.

dll
I:, = dr'

II

r
(2)

hold in the entire tuhe. irrespective of the material hehaviour.
In the elastic case, stresses and strains arc related hy Hooke's law

where

(4)

means the dilatation.
Considering (2)(4) and the condition of generalized plane strain, I:: = const, one

obtains from the equation of equilibrium (I) a differential equation for the displacement

d~1I I dll Ii 1-2\' ,
+ - - - -- l}(Jrr.

dr~ r dr r~ - 2(I-v)G
(5)

with the solution

C,. 1-2v , ,
II = . +(,r- pu,)"r .

r - 16(1- v)G
(6)

The C, indicate constants of integration. From (2)-(4) and (6), the stresses
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Fig. 2. Sketch of thl: clastic .and plastic regions in thl: rotating tutx:.
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are arrived at.
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2.2. Plastic region I, (10 > (1: > (I,

Since (I" is the largest and (1, the smallest stress, Tresca's yield condition adopts the
form



( 10j

where (1.) denotes the uniaxial yield stress. Insertion of the yield condition into the equation
of equilibrium ( I ) and integration gives

(II)

( 12)

The Row rule leads to

( 13)

Therefore

(14)

and one obtains the same expression (9) for the axial stress as in the elastic casc.
Rccause of plastic incompressibility, the dilatation is governed by Hooke's law.

( 15)

Thus, considering the geometric relations (2). a ditl'crential equation in II Gin be found,

Its solution is

dll II
+ =

dr r
( 16)

( 17)

The ditlcrence between the total strain I:" and its elastic part I:~,I. which is cakulated
with the help of Hooke's law, gives the plastic strains

( IX)

2.3. Plastic rC,l/iol/ /I, (10 > (1, = (1:

In this plastic region, the stress state is in an "edge regime" of Tresca's prism with

(llJ)

and the yield condition reads

(20)

Integration of the equation of equilibrium (I) together with the yield condition leads to

(21 )

(22)
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From the condition of plastic incompressibility (15). a differential equation in u can

be derived.

with the solution

du u I - 2v J " ]-+-= [0'0(l+3Inr)-~p(trr·+3Cs-f::.
dr r 2(1 +v)G

(23)

(24)

Again. the plastic parts of the strains are found as the difference between the total
strains and their elastic parts:

1-2v { [5-6V ] j " } C6 1
f:~1 = 4(I+v)G 0'0 2(1-2v) +Inr -4P(Jrr·+Cs - r 2 -2f::.

I I - 2v [ (v ), , ]i;~=---_·- 211 0 ----Inr +po)"r-2Cs +1':..
. 4(I+v)G 1-2v .

2.4. Plastic r£'.qiofl Ill. 11,/ > 11, > 11:

Here. the yield condition adopts the form

As a consequence of the now rule.

I':~I = -r.~I. ~I = O.

Hence

and

Next. these strains are inserted into the compatibility condition

Their elastic parts can be expressed in terms of the stresses via Hooke's law. so that

(25)

(26)

(27)

(28)

(29)

(30)

(31 )

(32)

In this derivation. use has been made of the yield condition (28) and the condition of
generalized plane strain. 1':: = const. With the help of the equation of equilibrium (I). one
obtains



where

The solution of (34) is

R~= __I­
2( I - v)

(35)

C -{I-Rl -(I+Rt I 1+6v" 2(1+\')G(11/ = 7' + Cgr + ---- (10 --------.. pw-" + E.. (36)
1-2v 17-18v 1-2v'

From (I) there follows

(1 = C7 r- tl - R1 _ Cg r- l1 + Rt + --(1 _ 2(3-2v) " 2(1+v)G
'R R 1-2v 0 17-18v pw-"+ 1-2v E: (37)

and from the yield condition (28)

(I Rt -(I+Rt 2v 1+6v" 2(I+v)G(1: = C7r +Cgr +--(10- ----pw·,.+ -~~-E.. (38)
1-2v 17-18v 1-2v'

Now. (31) and n6)-(38) yield the displacement

(39)

Finally. sinl:e 1;f,1 = _I;~'l = 1:~I-f.:. Hooke's law gives the plastic strains

1:1'1 = _I:~I = 1 [(I-V- v)c r ll Rt + (1- \'+ RV)cvr (I cRt
1/ - 2( I + v)G R 7 0

For c: = O. the basic equations of Gamer and Sayir (1984) for a plastic region of this type
are recovered.

3. STRESS DISTRIBUTIONS IN TilE TUllE

3.1. III the elastic rallge (j) ~ (JJ I

The equations for the displacement and the stresses contain the three unknowns Ct.
C~ and c:, In order to determine them, three conditions have to be found. Two of them
read:

r = a: (1, = 0,

r = h: (1, = O.

(41 )

(42)

The third follows from the assumption of free ends. which implies that the total axial force
on any section is equal to zero.
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(43)

In Appendix A. a list of these integrals is given for the different elastic and plastic regions.
Making use of the above conditions. one ends up with

where

_ (1-2v)(3-2~') 2( 2 b2)-v
C: - 16(1-v)G pw a + 6:.

-v 2 2 2
6: = 4(1+v)GPW (a +b).

(44)

(45)

(46)

3.2. In the elastic-plastic range w, ~ W ~ Wz

Since in the elastic tube the difference between the circumferential and radial stress is
independent of the axial stmin. yielding starts at the same angular speed

w=w,= (47)

as in the fixed end case (Gamer and Lance. 1983) at the inner boundary' = a. In the
subsequent load range. the tube is composed of plastic region I and the outer elastic region.
Besides the elastic-plastic interface radius" there are five more unknowns: Cr. Cz• C J• C4

and f::. The conditions for their determination read (in the following. the superscript denotes
the region) :

, = a: (1~1) = O.

, = h: (1~'1I = O.

(48)

(49)

(50)

(51 )

(52)

Of course. the free end condition (43) is needed here again and also in the following phases
of plastic flow.

From this. one obtains (see the remark in Appendix B)

_ I ( 2 I - 2v z 4)
C, - 4G (10"- 4(I-v) pw" •

C 1-2v {z I, 4 4 }
2 = 4h2G (10',+ 4(1_v)PCl)"[-(1-2v),,+(3-2l.)h] -\'f;:.

(53)

(54)

(55)
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(56)

The value of'l comes from

uoG +In ~ - ;~1)+ 8(1 ~v) P(1){(I-2V)(~! -2ri)+4(I-V)a2-(3-2V)b2] = 0

(57)

and expression (46) for &: holds again (see Appendix C).

3.3. In the elastic-plastic range (1)2 ~ (1) ~ (1)J
For (1) = (1)2. u, and (/: become equal at the elastic-plastic border ',. At this radius.

two additional plastic regions emerge. However. this holds true only if the tube is not too
thin-walled. For v = 0.3. for example. one finds alb < 0.8491. In thinner tubes u, and U:

become equal somewhere in plastic region l. This case is not treated here.
The angular speed (1)2 and the radius '1«(1)1) are obtained with the help of (57) and the

condition

(51')

In the load range (1)2 ~ (1) ~ (1).\. there are 12 unknowns: ('I. ('2. C.1• C4 , ('5. C.. C7 ,

('K. '1. '2' '.\ and r.:. In order to determine them. the following conditions are available:

, = (I: u~1) = 0, (59)

, ='1: u~1) = u~lH, (60)

u(l) = u(Il I, (61 )

(/~l)_C1~l) = Uo. (62)

r = r2: u~") = (/~Il11, (63)

Ullll = U(llll. (64)

(/~"l) _ (/~"l) = u o• (65)

r = rJ: (/~"l) = (/~.ll. (66)

U(III) = U{cll, (67)

(/~cll _ u~'" = u o. (68)

r= h: C1~.11 = o. (69)

They are completed by the free end condition (43).
Again. the constants of integration are expressed in terms of the radii 'I' '2 and rJ. It

is convenient to compute them-as far as possible-for the regions adjacent to the tube's
boundaries first. and then for the central regions:



Rotating elastk-plastic tube with free ends

(70)

I -1v {' I 1[I ., ~ (3 ., ')b~]C, = ~------.;--,- O"o"i+ --.-- pOl (-_V)f}+ --~
- 1[(1-2v)f"j+b-]G - 8(1-v)

\'

I-\'+ R { -I [I 2], , 2
_ I-R . 'l-'" ..---- arr---Ge_

C7 - 2(1-\') R" 1_ 2v O"o (- _\) 8(1-v) 17-18\' P J 1-2\' .

(71)

('to:::: 1.[(1-\'- V)C7d'II+(I-\'+ V)CKd II]
(I + \')(/ R R

f; { I-2v [ (I r~)", I'] I 1-2v " 'G}+ G 4(I+v) (Tu 2- 31n a -j,pur(tr-lfi) +2(To-1 _18vporfi+i t: •

2G (I - 2\')d { [ - I fl] I ' , I'} ,
C~ = . Cc. + -- (To ., 1-.;, -+ In - + ~pur(tr - ~fj) - GI:::fj.

1-2v 1(1+\') _( -~v) a

The <lxi<ll str<lin is given by

(75)

(76)

(77)

In the deriv<ltion of these results. no use h<ls been made of conditions (43). (63) and (65).
They form <I system of three equ<ltions in the three unknowns f l , f~ nnd f}. which hns to
be solved numerically.

3.4. /11 the elastic-plastic rall!J(' COl ~ (J) ~ CO~

With increasing angular speed. the interface r I between plastic regions I and II migrates
to the inner boundary of the tube and reaches it when w = (j}l' Hence. (t)l can be found
from the condition

(78)

In the subsequent load range. plastic region I vanishes and the unknowns rio C} and C 4
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drop. There remain the nine unknowns C, C2 • C5, C,. C,. C, r:. r, and £:. In order to
detennine them, conditions (43) and (63)-(69) are still valid. They are completed by

r = a: O'~lll = o. (79)

While the results for the constants of integration are retained without change, eqns (43).
(63) and (65) are used here to calculate f2. rJ and f.:. Although this system of three equations
could be reduced by one using a lengthy expression for f::(r:. f}), it is more convenient to
solve the whole system numerically.

3.5. In the totally plastic fange w~ ~ w (~w,)

At (J.) = w~. the elastic region disappears and the entire tube is plasticized. Thus. the
angular speed CIJ~ is found from the condition

(80)

Since a further small increase in angular speed beyond (OJ is possible (see Section 4), the
constants of integration and the equations for f: and I:: in the following load range arc
given. Making usc of conditions (43). (63)-(65), (79) and

one derives

c)=

• [I 2(3-2~')" 2(1+\')(1 J_(I+R)h'·Rr,fl.HI (J'1l- . f/urh'+ D.
o I - 2. \' 17 - IX\' I - 2. I'

5(1 - 21') .,
+(J'Il- 7 P{l)'f~

I-IXI'

(81)

.' I+H[C) -(I-HI I 2(3-2v) zh z 1(I+V)G.JCK = Rh·· h + .... (J' IJ - pW + L .
R 1-1\' 17-181' 1-2v .

(83)

Cs and C, arc calculated by means of (71) and (75), respectively. The interface fz and the
axial strain I:: (which could be expressed in terms of fz in principle) arc determined with
the help of (43) and (63).

The range of validity of the above equations has an upper limit U) = Wj, for which
the circumferential stress at the tube's outer boundary vanishes. However. a detailed
investigation of the behaviour at such high rotational speeds is not meaningful within a
geometrically linear theory.

4. NUMERICAL RESULTS

For the numerical treatment of the problem it is convenient to introduce the following
non-dimensional quantities:

The stress distribution is discussed for Q = 0.5 and Poisson's number \' = 0.3.
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Fig. J. Evolution (,f plastic regions with increasing angular speed.

First. Fig. 3 shows the evolution of the border radii with increasing U in the range
U,::::; U ::::;n~.

Figure -t exhibits the stress distribution in the elastic tube just at the onset of plastic
now. amI during the tirst clastic-plastic phase according to Sections 3.1 and 3.2. n:spectivcly.
Note that for U2 the radial stress equals the axial stress ~tt the clastic-plastic border!
Thereafter. two additional plastic regions emerge. The stresses in the subsequent flow phases,
according to Sections 3.3-3.5. are depicted in Fig. 5. One should watch simultaneously the
evolution of plastic deformation also on the deviatoric plane (Fig. I) and on Fig. 6! Of
course, the absolutc value of the plastic strains presented in Fig. 6 grows monotonically
with increasing angular speed.

Finally, Fig. 7 shows the displacements in the tube for four different angular speeds.
A point that has still to be discussed is the plastic collapse speed. As already mentioned

in the Introduction. the angular speed U4 corresponding to the totally plastic state is
ncvertheless not the plastic collapse speed. Indeed. the stress image point of the tubc's outer
boundary travels with increasing load towards the lower corner of Tresca's hexagon (see
Fig. In, and reaches it for Us = 1.7500. Then, a further increase in speed causes the
formation and extension of a second plastic "edge regime" region and one C~lI\ imagine that
in the tinal state the tube would be composed of this new plastic region and the inner plastic
region II. with an infinitely small plastic region III in between. The same stress distribution
was obtained by Lenard and Haddow (1972) in their analysis of the plastic collapse speed.
Figun: Xexhihits U~ and the plastic collapse speed U,.(' as functions of the ratio Q in the
mnge 0.3 < Q < 0.82. While the difference is ncgligible for thin-walled lUhes. it hecomes
noticeahle with decreasing values of Q.

Of particular interest are also the stresses remaining after the stand-still. As soon as
the angular speed decreases. the whole tube behaves elastically again. Thus, the stresses in
the completely unloaded state can be found by subtraction of the stresses occurring in an
unlimited elastic tube from those in the actual tube at the same maximum angular speed
Um. provided that the residual stresses do not reach the yield limit. Indeed. secondary plastic
now can occur only in very thick-walled tubes (Mack. 1991).
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Figure 9 shows the residual stresses in the tube with Q = 0.5 for three different
maximum angular speeds. While the stresses in the radial and axial direction are com­
paratively small, the circumferential stress attains a significant extremum at the tube's inner
boundary.
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APPENDIX A

The integrals

I(s. t) - fO',r dr.

where ., and t denote two arbitmry mdii. lake the following forms:

(a) in the elastic region

v .,..... G· \" .,.
I(s.t) = - 8'-('1'-- J",r(t -s ) + -1"'2" (21-CJ +(1-1-)1:,)(1' -s')

-v) - v

(h) in plastic region I

(c) in plastic region II

(d) in plastic region 1/1

I() C1(1'~ I'~) C'(l'~ l.~ V (' ,s.t = t -s + ., t -s )+---0' t·-s·)
1+ R 1- R 1- 2v •

(AI)

(A2)

(A3)

(A4)

1+ 6v 1.. (I + v)G J 1
- 4(17-181-)PW (t -.f)+ '1_2v-I::(t -.f). (A5)

APPENDIX B

For w > w, one has to find the eonslants of integration, lhe axial slrain. and the border radii separaling the
different elastic and plastic regions. The system of equalions for their determination is non·linear in the border
radii and linear in the olher unknowns. To reduce the number of equations. the constants of inlegralion and the
axial slrain can be expressed (in differenl forms) in lerms of the border radii. The remaining non-linear equations
then have to be solved numerically.
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APPENDIX C

In the load range w ~ W2 the axial strain can be derived in a way proposed by Bland (1956), too. Since
£, = c: both in the elastic region and in plastic region J. relation (9) for the axial stress holds throughout the tube.
With the help of the equation of equilibrium (I), one can express u, in terms of u,.

(
d~ • .)a, = v r~ +2a,+pw'r' +2(1 +v)G£,.

Insertion of this expression into the free end condition (43) and integration yields

From this. using the conditions 11,(0) = 11,(b) = O. one obtains

-v ".2"
6, = 4(1+v)GPw'(a +h').

(Cl)

(0)


