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Abstract— Based on Tresca’s yield condition and the associated flow rule, the distribution of stress,
strain and displacement in a rotating hollow cylinder of elastic-plastic material under generalized
plane strain is discussed.

I. INTRODUCTION

Rotating tubes are found frequently in mechanical engineering. To better utilize the
material, plastic deformation is admitted in many cases. However, most of the authors
concerned with this topic [e.g. Davis and Connelly (1959)., Rimrott (1960). Lenard and
Haddow (1972). Lo and Abeyaratne (1981), Durban and Kubi (1990)] did not study partial
yielding. The first analysis of a partially plastic, elastically compressible rotating tube is
duc to Gamer and Lance (1983), who assumed fixed ends.

The subject of this paper is the more intricate problem of a rotating clastic-perfectly
plastic tube with free ends. The basis of this investigation is Tresca's yicld condition and
its associated flow rule. Itis assumed that the tube retains its circular symmetry throughout
the loading process and is sufficiently long for the stress and strain not to vary along the
tube. Then, the principal directions of stress and strain are the radial, circumferential and
axial directions.

In Fig. 1, Tresca’s yield condition is represented in the usual way as a regular hexagon
in the deviatoric planc of the three-dimensional principal stress space. This figure shows six
phases of the development of plastic flow occurring in a rotating tube with inner boundary
at r = ¢ and outer boundary at r = b. The denomination of the different elastic and plastic
regions and the border radii separating them can be found in Fig. 2. At an angular speed
w = w,, plastic flow starts at the inner edge and spreads with increasing values of w (Figs
la and Ib). Next, for not too thin-walled tubes (see Section 3.3), the stress image point of
the clastic-plastic border r, reaches at @ = w, a corner of Tresca’s hexagon and two
additional plastic regions with different forms of the yield condition emerge (Figs Ic and
Id). Further increase in angular speed causes the stress image points of plastic region I to
migrate into the corner and for w 2 w, two different plastic regions only remain inside the
elastic outer shell (Fig. le). Finally, for w = w,, the elastic region disappears and the tube
attains a fully plastic state (Fig. 1f), which however is not its collapse state (see Section 4).

In Section 2, the basic equations of stresses and displacements in the elastic region and
in the three different plastic regions will be determined by integration. In Section 3, the
stress distributions in the tube are derived for different ranges of the load parameter. Finally,
in Section 4, numerical results are presented and discussed.

2. BASIC EQUATIONS

2.1. Eluastic region
The equation of equilibrium

do, o,—ay
-+

&t T e M

and the geometric relations
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Fig. 1. Stress ficld in the rotating tube mapped onto the deviatoric plane of the principal stress space

(sketch). (a) @ = |, yielding starts at the inner boundary r = ¢ (b) 0, < w < m,, a plastic region

spreads : (¢) @ = w,, the axial stress equals the radial stress at the clastic- plastic border r; (d)

@, < m < w,, two additional plastic regions spread ; (¢) @, € o < my, the first plastic region has
disappeared ; (f) @ = my, the entire tube behaves plastically.

hold in the entire tube, irrespective of the material behaviour.
In the clastic case, stresses and strains are related by Hooke's fTaw

v v v
_ ! . . 1 . =3¢ « B
a,_._G<L,+ | 2\")‘ 6(,—_G<1.,,+ | 2vt>' a:—..(:<z._.+ l 2\")’ (3

¢ =&+t (4

means the difatation.
Considering (2) (4) and the condition of gencralized plane strain, «. = const, one
obtains from the equation of equilibrium (1) a differential equation for the displacement

d’e ldu u 1 —2v

R B T N . 5
. + Sy T =) pur (5)
with the solution

C, P—2v 2y
= Cor— o pwirt. 6
T +Cr l6(|—v)Gpw r ©

The C, indicate constants of integration. From (2)-(4) and (6). the stresses
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Fig. 2. Sketch of the elastic and plastic regions in the rotating tube.
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are arrived at.

2.2. Plastic region I, 6y > 6. > o,

w =Iﬂ2

(rlsr2=r3)

)

(8)

9

Since g, is the largest and o, the smallest stress, Tresca’s yield condition adopts the

form

835 27-11-H
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Ch—~0, = 0. (10)

where o, denotes the uniaxial yield stress. [nsertion of the yield condition into the equation
of equilibrium (1) and integration gives

o, =o,Inr—!poir+C,. (1D
or =o,(1 +Inr)—por+C,. (12)
The flow rule leads to
e = el =, (13
Therefore
£o=¢, (14)

and one obtains the same expression (9) for the axial stress as in the elastic case.
Because of plastic incompressibility, the dilatation is governed by Hooke's law,

| -2y
* = O, 4+0,+a.). 5
S 2(]_*_")(’( T (T_) (l )

Thus, constdering the geometric relations (2), a differential cquation in 1 can be found.

du  u 1=2 . ,
a7 [rall4+21Inr) —porr + 20| = 2vi.. (16)
Its solution is
b -2 Lo e G
u ' oprinr—pwr +Cir+ . —ve.r, (17

The difference between the total strain &, and its clastic part &5, which is calculuted
with the help of Hooke's law, gives the plastic strains

y I 4 Y P S ,
by = —&, = °G 4I)(.')'I"~+- r: — Gy (]h)

2.3. Plustic region 11, 6, > o, = 0,
In this plastic region, the stress state is in an “edge regime™ of Tresca's prism with

g, =a. (19)
and the yield condition reads
G)—6, =0,, O,—0.=0,. (20)
Integration of the equation of equilibrium (1) together with the yickd condition leads to
o, =0.=a,nr—pwir+Cs. 2n

ga = ool +Inr)— tpw'ri+ Cs. (22)
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From the condition of plastic incompressibility (15), a differential equation in u can
be derived,

du u 1 -
—+ = -1 - 23
dr+’ 0+ )G[ao(l+3lnr) Ipw’r’+3Cs)—c., (23)

with the solution

1-2v c
“Sai+ )G[""'( 14310 ) —low’r’ +3Csr]+ == —ler. 24)

Again, the plastic parts of the strains are found as the difference between the total
strains and their elastic parts:

1-2v 5—6v C
! -] 2.2 _ - 1
o= 4(|+v)G{ [2(1—2v) +in ’] ipw’r +C5} T T2 (25)
1—2v §5—2v C, N
&W:m{an[ 2(1_2 )+lnr]+4pﬂ) re +C} r. —5 — 3k, (26)
1-2 .
e = ;‘ﬁ:&; [2 (l—_v—é; —~In r)+pm'r*—2C5]+.‘::. 7

2.4. Plastic region I, 0y > 0, > 0,
Here, the yicld condition adopts the form

Oy —0,. = 0y. (28)
As a conscquence of the flow rule,
=, & =0. (29)
Hence
£, = ¢ (30)
and
e =c; +ef =& +& —¢.. (31

Next, these strains arc inserted into the compatibility condition
d
& = 5, ). (32)
Their elastic parts can be expressed in terms of the stresses via Hooke's law, so that
d d
o, —v(20y—0y) = (1 —=v)| 2 i (cyr)—oay |—2v a (o,r)—=2(1 +v)Gke.. (33)

In this derivation, use has been made of the yield condition (28) and the condition of
generalized plane strain, ¢, = const. With the help of the equation of equilibrium (1). one
obtains
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3dz‘70 3 doy s 1-R* v s .
PgE T g FU-RYG = [~ (14 6vp0’ P +2(149Ge] (34
where
R =
—-2(‘_"). (35)
The solution of (34) is
o ~ ] 1+6v ., 2(1+0G
Gy = C}f “ m‘*’Cgf (‘+R}+ i‘:‘j; Gy~ i7;“!—8“‘; p(f}'f"*{" l_:é;)"“ E.. (36)
From (1) there follows
Cr o vn G _gan 1 23—-2v) ., 2Al+wG
*=RTOTRT i uow O oy s GO0
and from the yicld condition (28)
2v 2 '
0. = Cor 0 Ry Cyptieny 2 L0 e JUENG g

P ST i A g e ™

Now, (31) and (36)-(38) vield the displacement

I V v l I _— 2V
= s —v— - Cr® —_v RA4 o gof oo e bt
u= +v)6[(l v R)Cﬂ‘ +<l v+ R)er ]4- 560 T TR P +er.

(39)

Finally, since &' = — & = ¢ —¢., Hooke's law gives the plastic strains

| v v
'N — :{“ W e oo, ——Y — AN + — + - ek
K = 2004+ )G [(l ! R)C7r (| i R)er

T4+v)(1—=2v .
- (*-‘ T_; ?f l8vv‘) pw“r'}. (40)

For &, = 0, the basic equations of Gamer and Sayir (1984) for a plastic region of this type

are recovered.

3. STRESS DISTRIBUTIONS IN THE TUBE

3.1, In the elastic range w € w,

The equations for the displacement and the stresses contain the three unknowns C,
C, and ¢.. In order to determine them, three conditions have to be found. Two of them
read

r=a. o0,=0, 41
r=b: o6, =0 (42)

The third follows from the assumption of free ends, which implies that the total axial force
on any section is equal to zero,
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b
Zn‘[‘ o.rdr=0. (43)

In Appendix A, a list of these integrals is given for the different elastic and plastic regions.
Making use of the above conditions, one ends up with

3-2v -

LB S 7% 3 44
Cr=tet—nG P4’ (44)
a-2»3-2v ,, , .,
, = 22 2y —ve.. 45
C=gli—ng P @ FII @)
where
— 1, 2 .
.= ————— “ ). 46
&= qanePe @+t (36)

3.2. In the elastic-plastic range v, € w € W,
Since in the elastic tube the difference between the circumferential and radial stress is
independent of the axial strain, yielding starts at the same angular speed

_ 4(1 —v)a,
== J PT= 200"+ G- 2957) @

as in the fixed end case (Gamer and Lance, 1983) at the inner boundary r = a. In the
subsequent load range, the tube is composed of plastic region I and the outer elastic region.
Besides the elastic-plastic interface radius ry there are five more unknowns: C,, C,, C,, C,
and &,. The conditions for their determination read (in the following, the superscript denotes
the region) :

r=a: oV =0, (48)
r=r: o =g, (49)
u = gy (50)

of" -0 = g,, s

r=b: o =0. (52)

Of course, the free end condition (43) is needed here again and also in the following phases
of plastic flow.
From this, onc obtains (see the remark in Appendix B)

L, =,
C = Z‘G‘(Uon—mpw ’n). (53)

c—'_zv{ (= (1= 20 b*
2= s 00r|+mpw [-( el V)’|+(3—2V) ] - Ve, (54)

Cy = —ag,lna+ipwia?, (55)
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== 0ori — {pw’r}. (56)

The value of r, comes from

(_l.+}n.r_'__.i>+.__l__ (12 (I’T 2,2 (1 2 3206 =0
) a 25°)T 83— (1= 32 =2ri J+4(1 =02’ = G- | =

(57)
and expression (46) for &, holds again (see Appendix C).

3.3. In the elastic-plastic range w; € w € w,

For w = w,, 0, and ¢, become equal at the elastic-plastic border r,. At this radius,
two additional plastic regions emerge. However, this holds true only if the tube is not too
thin-walled. For v = 0.3, for example, one finds a/b < 0.8491. In thinner tubes o, and o,
become equal somewhere in plastic region I. This case is not treated here.

The angular speed w; and the radius r (w;) are obtained with the help of {(57) and the
condition

0':7”("1(0’2%0)2) ““0":“("1((112)-“):) = 0y (58)

In the load range w; € w < w,, there are 12 unknowns: C,, C., Cy, Cy. Cs, Cy. Co,
Cy. 1y, ra. ryand e.. In order to determine them, the following conditions are available:

r=a: o' =0, (59)
r=ry g =gl (60)
u? = g (61)

o' — g = g,, (62)

r=ry: o =ql'"" (63)
w = g, (64)
o{,"”—oﬁ"" = g, (65)

r=ry: oM =g, (66)
D = gt (67)

fon —Gf.‘” = g, (68)

r=b: o =0. (69)

They are completed by the free end condition (43).

Again, the constants of integration are expressed in terms of the radii ry, ryand ry. It
is convenient to compute them—as far as possible—for the regions adjacent to the tube’s
boundaries first, and then for the central regions:
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rib* -2 yon?
r3 =2vb°}j+2 H-V)GS:}, (70)
G = 7[(1_‘?\)r3+b ]G{ 8(] )pw - J+2
=2y L , ) \
\ = s T p (1 = 2v)r3 + (3 -2v)b
C, 2{(1__2")"34_5_]6{0’0"3‘*'8{1_‘,)1’0’ [( viry+( )6%]
B v 2
+"< ri— l—zvb )Ge:}. o))
C.=Cs=—0oylna+ipwia’, 2
=yt
—p
R, g} 1 Iy Lo 2 - 2 G
C=50=y f {n—zv““‘(:‘""‘) TS RIS R I Phs

-

-2G < < +—-—!j-—"—~-r“" —lo s o2 }pm:r:
i 1=2v 201=v) * T 8(1-v)  17—18y }

- Ge, +G( +C)} (73)

Crom ! 2 .
r!(! )+ - ‘,, 6(;”{’(3_2") - ,U(f).r;

= 1+ R
Co = Rry {R [ =2y 8(1—v)  17—18v

(.4 — v v .
Co= (I-H)(x[( )’r‘ +<[ ‘+R)(“’
P =2y L -2
r {4(]+:)[ ( '>“::Przf(€l"-§?'§)]+§0'o |7 8 p” ra %Ga:}, {(75)

2G (“‘7\')’: -1 Pl a2t 1,2 2
[_‘2"C('+ .’(‘+ N {0“[2(1—2&')—'"]“ ;;J-%;pw (@ —3r)) ¢ —Ge.r;.  (76)

The axial strain is given by

——(!.-2") v ry i 2,02 *
= ™M e el —a 1 -
& 1+9G I:a”(t—-zp In a)'*‘-i’w (ri—a }} (n

In the derivation of these results, no use has been made of conditions (43), (63) and (65).
They form a system of three equations in the three unknowns ry, r, and 7y, which has to
be solved numerically.

b -
=
| S|

Cw.‘ =

3.4, In the elastic-plastic range w3 < w < w,y

With increasing angulur speed, the interface ry between plastic regions T and H migrates
to the inncr boundary of the tube and reaches it when w = w,. Hence, @, can be found
from the condition

riwy) =a (78)

In the subsequent load range, plastic region | vanishes and the unknowns ry, C; and C;
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drop. There remain the nine unknowns C,, C,. Cs. C,. C-. C,. r.. ryand e.. In order to
determine them, conditions (43) and (63)—(69) are still valid. They are completed by

r=a: o =0 (79)

While the results for the constants of integration are retained without change, eqns (43),
(63) and (65) are used here to calculate r,. r; and ¢.. Although this system of three equations
could be reduced by one using a lengthy expression for ¢.(r,.r,). it is more convenient to
solve the whole system numerically.

3.5, In the totally plastic range w, € w (< wy)
At w = @, the elastic region disappears and the entire tube is plasticized. Thus, the
angular speed w, is found from the condition

rw,) = b (80)

Since a further small increase in angular speed beyond w, is possible (sce Section 4). the

constants of integration and the equations for r, and «. in the following load range are
given. Making use of conditions (43), (63)~(65). (79) and

r=h; o' =y, (81)

once derives

! 232 L, 2ALENG
e R it R Py AN N
~{1+ R} " r, ;[l~2v Ty~ 17— 18y paorh 4 oy &
S5¢1 - 2v) -
‘ T g gy MO
C, = . (82)

; |
SN PR M PEL TR
(i R)" +<I+R) &

2, 200G }

w' b+ 125y (83)

_ ppier] €14 m ! 23-2v)
Co=Rb [‘R (R i MUY AT
Cy and C, are calculated by means of (72) and (75), respectively. The interfuce r» and the
axial strain ¢, (which could be expresscd in terms of r, in principle) are determined with
the help of (43) and (63).

The range of validity of the above equations has an upper limit & = w;, for which
the circumferential stress at the tube's outer boundary vanishes. However, a detailed
investigation of the behaviour at such high rotational speeds is not meaningful within a
geometrically lincar theory.

4. NUMERICAL RESULTS

For the numerical treatment of the problem it is convenient to introduce the following
non-dimensional quantities:

Q =ualb. ii=uEl(bay). x=rib, i =cElo, & =0/00. Q=pw’bio, (84)

The stress distribution is discussed for @ = 0.5 and Poisson’s number v = 0.3.
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Fig. 3. Evolution of plastic regions with increasing angular speed.

First, Fig. 3 shows the evolution of the border radii with increasing Q in the range
Q<0<Q,.

Figure 4 exhibits the stress distribution in the clastic tube just at the onset of plastic
flow, and during the first elastic-plastic phase according to Sections 3.1 and 3.2, respectively.
Note that for Q, the radial stress equals the axial stress at the clastic-plastic border!
Thercafter, two additional plastic regions emerge. The stresses in the subsequent flow phases,
according to Scctions 3.3-3.5, are depicted in Fig. 5. One should watch simultancously the
evolution of plastic deformation also on the deviatoric plane (Fig. 1) and on Fig. 6! Of
course, the absolute vatue of the plastic strains presented in Fig. 6 grows monotonically
with increasing angular speed.

Finally, Fig. 7 shows the displacements in the tube for four different angular speeds.

A point that has still to be discussed is the plastic collapse speed. As already mentioned
in the Introduction, the angular speed Q, corresponding to the totally plastic state is
nevertheless not the plastic collapse speed. Indeed, the stress image point of the tube’s outer
boundary travels with increasing load towards the lower corner of Tresca'’s hexagon (see
Fig. 1f), and reaches it for Qg = 1.7500. Then, a further increase in speed causes the
formation and extension of a second plastic “*edge regime™ region and one can imagine that
in the final state the tube would be composed of this new plastic region and the inner plastic
region 1. with an infinitely small plastic region I in between. The same stress distribution
was obtained by Lenard and Haddow (1972) in their analysis of the plastic collapse speed.
Figure 8 exhibits Q, and the plastic collapse speed Q- as functions of the ratio @ in the
range 0.3 < @ < 0.82. While the difference is negligible for thin-walled tubes, it becomes
noticcable with decreasing values of Q.

Of particular interest are also the stresses remaining after the stand-still. As soon as
the angular speed decreases, the whole tube behaves elastically again. Thus, the stresses in
the completely unloaded state can be found by subtraction of the stresses occurring in an
unlimited elastic tube from those in the actual tube at the same maximum angular speed
Q. provided that the residual stresses do not reach the yield limit. Indeed., secondary plastic
flow can occur only in very thick-walled tubes (Mack. 1991).
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Figure 9 shows the residual stresses in the tube with @ = 0.5 for three different
maximum angular speeds. While the stresses in the radial and axial direction are com-
paratively small, the circumferential stress attains a significant extremum at the tube's inner

boundary.
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APPENDIX A

The integrals
t
I{(s.1) = I a,rdr, (AD

where v and 7 denote two arbitrary radii, take the following forms:

{a) in the clastic region

. = — .,_,_!.__ 2ppt o4 __C.':‘_ o 20 —_— b 5
Ks.1) i po(t =5+ l_zv[-tC,-Hl vieJ(#F —s7) (AY)

(b} in plastic region {
1(s.1) = va, (1’ In t =57 In 5) - : pwr (et =5+ [vCy + (1 +9Ge (£ =5%) (A3)

(¢) in plastic region i
(5,0 = Lo, (P In 1= In )+ (1Cy = Lo ¥ =5y = Lpad® (1* = 5y (A4}

(d) in plastic region 11!

e S in_aem . G ien v 12
I(.\.l)-H_R(l - )+r_R(l -5 )+.l_:_2_v%(, —5?)
T+6v ey, U#WG
= ATy P s e =) (AS)

APPENDIX B

For w > ), one has to find the constants of integration, the axial strain, and the border radii separating the
different elastic and plastic regions. The system of cquations for their determination is non-linear in the border
radii and linear in the other unknowns. To reduce the number of cquations, the constants of integration and the
axial strain can be expressed (in different forms) in terms of the border radii. The remaining non-linear equations
then have to be solved numerically.
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APPENDIX C
In the load range w € w, the axial strain can be derived in a way proposed by Bland (1956). too. Since

€. = £ both in the elastic region and in plastic region I, relation (9) for the axial stress holds throughout the tube.
With the help of the equation of equilibrium (1), one can express o in terms of o,,

d 2 s
g, = v(r% +20,+pw’r‘)+2(l +v)Ge.. (Cn

Insertion of this expression into the free end condition (43) and integration yields
vibio, (M) ~d’a, (@) + Lpw* (b* —a*)] + (1 + VIGe.(b* —a®) = 0. (CY)
From this, using the conditions ¢,{(a) = a.(h) = 0, one obtains

—Vv
_ 2.2 4 Bl
& = HTFC " (a*+b%). (C3)



